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Quantum signatures of chaos in integrable systems 
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Received 1 May 1995 

Abstract. Two fundamental quantum signatures of classically chaotic behaviour, large second 
derivarives and the logarithmic time banier separating classical from quantum dynamics, have 
been observed near the sepanvix of an integrable spin system. A systematic study in the 
neighbourhood of the separatrix reveals that the ermr in semiclassical eigenvalues (measured in 
units of the quantum level spacing) approaches a finite value at the classical limit. The generic 
factor which limiu the validity of the correspondence principle is the presence of classical 
instabilities; chaotic behaviour is one such case: the separatrix of an integrable system is another. 

1. Introduction 

Research in chaos, i.e. the area where classical and quantum descriptions of relatively simple 
physical systems appear to be in fundamental conflict, has placed the semiclassical limiting 
process at a natural focus of interest. This has been especially clear in the dynamics of the 
crossover from classical to quantum behaviour [I]: systems which are classically chaotic 
begin to exhibit quantum behaviour after a very short time (logarithmically divergent as 
h + 0); systems which are classically non-chaotic take longer to reveal their quantum 
nature; the crossover time diverges as an inverse power of h.  

It is well known that the onset of chaos in Hamiltonian systems which exhibit both 
bounded and unbounded behaviour in phase space, occurs near the separatrix; tori in that 
neighbourhood are the first to break up according to the KAM scenario. On an apparently 
unrelated level, it has been observed [2] that the spacing of quantum levels near the 
classical separatrix in a double-well potential approaches the classical limit very slowly 
(logarithmically) as h + 0. The authors of [2] characterize this practical limitation of 
the correspondence principle as a macroscopic quantum effect. Bearing in mind that the 
'observable' under consideration in [2] is in fact a frequency, it is natural to regard the 
difference A u  between quantum mechanical and classical frequencies as a measure of the 
distance from the classical limit; the inverse quantity 2n /Au represents the observation time 
needed to achieve the frequency resolution Aw, i.e. it quantifies the validity of classical 
dynamics in the time domain. 

Taken together, the results of [1,2] suggest that the same logarithmic divergence which 
characterizes the relatively fast crossover from classical to quantum behaviour in (classically) 
chaotic systems appears in a context which is (at first sight) unrelated to chaos. In order to 
pursue this intriguing question further, we have studied a classically integrable spin system. 
The system offers some practical advantages in regard to the study of the classical limit. 
On the one hand, it is possible to perform highly accurate quantum mechanical calculations 
for large values of the spin S, i.e. 'near' the classical limit. On the other hand, the approach 
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to the classical limit S + w can be followed systematically, according to Fisher's [3] 
procedure. 

We have calculated the error occurring in semiclassical energy eigenvalues (measured 
in units of the level spacing 141). This quantity provides a direct measure of the approach 
to classicality. Our conclusions go beyond those of [4]. Not only does the semiclassical 
approximation fail to predict individual energy levels near the separatrix, in the sense that 
the error is bounded from below; even at the limit S + w the error remains finite. Similar 
conclusions hold for the relative error of the semiclassically computed frequencies. In 
terms of dynamics, our findings extend those of [2] to spin systems. The logarithmic 
dependence of Aw on the classicality parameter gives rise to the same 'macroscopic' 
quantum effects. Away from the classical separatrix, the correspondence principle exhibits 
its standard 'robustness'; the errors vanish as power laws of 11s. 

2. Classical dynamics 

We consider the two-spin-S XXZ Hamiltonian 

V Conslantoudis and N Theodorakopoulos 

H = J (S1  . SI + ASfS;). (2.1) 
At the classical limit of (2.1), defined by [3,5] h + 0. S -+ w , h S  --f S,,, J + 
0, JJ- + j ,  the spin operators can be substituted by unit vectors (g;), We 
employ a system of dimensionless variables, in which energies and times are measured 
in units of j and Scl / j ,  respectively. Furthermore, we use canonical variables 161 defined 
by p; = a;, tan@, =a)'/$. 

A further reduction is possible by exploiting the rotational invariance of (2.1) with 
respect to the z-axis. Using the canonical transformation 

( p i ,  pz.@i.M + (P = pi, pr = P I  + P I , @  = @i - 42, x = $ 2 )  (2.2) 
and setting, without loss of generality, pr = 0, we reduce the dynamics to a single degree 
of freedom, described by the classical Hamiltonian 

KI (P ,@)=(~  - P ~ ) C O S @ - ( ~ + A ) P ~ .  (2.3) 
Hamilton's equations for (2.3) can be solved exactly in terms of elliptic functions. The 
topology of trajectories in phase space (figure 1) differs according to the value of the 
anisotropy parameter. The topology of type I is similar to that of a simple pendulum, 
whereas the topology of type II has not been found in known particle systems and appears 
to be a distinct feature of spin dynamics. Both topologies are characterized by the presence 
of separatrices. 

The action variable can be defined on the IONS of energy E as 

It is possible to use action variables defined in a p-representation, i.e. as integrals 

For tori which are in the neighbourhood of the separatrix, the frequency is given 
over d p ;  such action variables are related to (2.4) via a Legendre transfonnation. 

asymptotically by 

where Escp is the energy at the separatrix, and A the instability exponent which characterizes 
the unstable fixed point contained in the separatrix. The exponent h expresses the rate 



Quantum signatures of chaos in integrable systems 5703 

- io  - 
0.0 0.2 0.4 0.6 0.8 1.0 

rpllrr 

Figure 1. ( a )  Type I topology has one unstable fixed point at p = 0.4 = 0 with 
A = 4-2(2 + A) if A < -2 or at p = 0. r p  = r with I = fi if A > 0. This phase 
space diagram is drawn for A = -4. (6) Type I1 topology occurs for -2 < A c 0. There are 
two unstable fixed points at p = +I with instability exponent A = J-An + A). This phase 
space diagram is drawn for A = -0.6. 

at which a point belonging to the unstable (stable) manifold of the hyperbolic fixed point 
recedes from (approaches) the fixed point. In other words, it is a local Lyapounov exponent. 

3. Semiclassical quantization 

In order to perform the WKB quantization procedure for a spin system, it is first necessary 
to write down Schrodinger’s equation in differential form; to do this, we use Villain’s [7] 
transformation 

s,+/s = ,ih J i  - b,z - - B. 

- J-7 (3.1) 
3 

Pm -i& S,-/S = 1 - j ;  - = e n = l , 2  

where c. = S&/s and 3 = d m  (- S + f for large values of S); using (3.1) it is 
possible to rewrite the quantum Hamiltonian in terms of the canonically conjugate operators 
6 = 61 and 6 = $1 - &q (again setting Sfot = 0 without loss of generality) as 

HqU@.$)=f  [ / T - & 4 , / T t H C ]  - ( l t A ) j * .  (3.2) 

Schrodinger’s equation in the p-representation follows from (3.2) by the substitution 4 = - A L .  The WKB method can now be formulated as in particle systems. The s 0 
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quantization rules follow from the demand that the semiclassical wavefunction should be 
single-valued. They are slightly dependent on the type of torus considered 

I r(m = - + 

S+; 
(oscillational tori, n any positive integer) (3.3) 

and 

I (E,)  = - 1. 
(degenerate rotational tori (type I topology only), An = 2 ) .  (3.4) 

The Hamiltonian (2.1) is tridiagonal in the subspace corresponding to S& = 0 and 
can be readily diagonalized to give the quantum mechanical spectrum. As a test of the 
numerical procedure, we have checked for the presence of pairs of eigenvalues which are 
exactly symmetric around zero for A = -1  (any S). The pairs sum to values of O(10-i5) 
for S = 1000 and U(10-i4) for S = 5000. 

In the type I topology, quantum eigenvalues which correspond to rotational tori appear 
almost degenerate due to dynamical tunnelling [8, 91. The quantization conditions (3.4) 
must be supplemented by the tunnelling splitting. The semiclassical spectrum computed by 
numerical solution of (3.3) and (3.4) is in good agreement with the exact one, except in the 
neighbourhood of Esep; in this case, it is possible to improve on the WKB procedure following 
Miller’s method, originally developed for potential tunnelling [IO]; semiclassical spectra 
near EsV, computed according to [IO], represent a substantial improvement compared to 
those obtained by the standard WKB method; in particular, it is possible to obtain quite good 
values (i) for the energies of non-degenerate states and (ii) for the tunnelling splitting of 
degenerate states. 

The 
semiclassically computed (non-degenerate) spectrum is in good agreement with the exact 
one, except in the neighbourhood of Esep. 

In order to test the quality of the semiclassical approximation, it  is expedient 
[4] to examine the difference AE,,q between corresponding semiclassical and quantum 
eigenvalues, E,, and E,,, respectively, measured in units of the energy level spacing AEqu 
of quantum eigenvalues. A small ratio, compared to unity, is a minimum requirement 
for a meaningful semiclassical approximation, since it allows a one-to-one correspondence 
between semiclassical and quantum spectra. A ratio which tends to zero in the classical 
limit might be expected on general grounds of the correspondence principle. The findings 
of [4] for the one-dimensional potential U ( x )  = U,/cos2(x) suggest that the situation is 
more subtle; in the limit of large quantum numbers the ratio remains finite, bounded by the 
finiteness of h;  for a given quantum number, it approaches zero (as h )  in the limit A 4 0. 
In our case, we are dealing with a system with a finite number of states (O(S)), hence our 
classical limiting process A + 0, S + 03. hS 4 S,,, is necessarily of the second type. 

s+; 

Type Il topology is characterized by the absence of (dynamical) tunnelling. 

We have computed the ratio - 
(3.5) 

as a function of S. The averages are taken over the four states closest to the classical 
separatrix. Results are shown in figure 2; the striking feature is that the dimensionless ratio 
6~ approaches a finite value (0.08) in the limit S --f 03, i.e. the semiclassical approximation 
fails to predict individual energy levels even in the limit S + 03. 

A similar calculation of 86 for energies far from Esep shows that the ratio approaches 
zero as 11s. We thus conclude that the presence of the separatrix ‘undermines’ the validity 
of the semiclassical approximation. 

A&.q &(Esep, S) = = 
AEqu 
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Figure 2. The deviation of the semicissical energy eigenvalues from the exact quantum 
eigenvalues divided by the (quantum) level spacing is plotted as a function of S, for A = -0.6. 
Both numeralor and denominator represent averages over the four eigenvalues closest to the 
separavix energy. The dotted curves are a guide IO the eye. 

4. Separatrix and the correspondence principle: implications for quantum chaos? 

One of the first, and probably one of the most fundamental, formulations of the 
correspondence principle is that the quantum frequency wqu = (En+,  - E,)/h must, in 
the limit Tt -+ 0, approach the classical frequency of the torus with action I,, = I(E.) 
(more exactly, the torus with action ( I ,  + I n + , ) / 2 ) .  

We have computed os. as a function of S, from the difference of the quantun 
eigenvalues E+ and E- lying immediately above and below the separatrix, respectively. 
The corresponding classical frequency w,l is defined as the oscillation frequency on the torus 
with energy (E+ + E - ) / 2  (the torus with action ( I+ + L ) / 2  leads to the same results). 
Results of our calculations, shown in figure 3, reveal a slow (logarithmic) convergence of 
both quantities to zero. The slow approach of wqu to 0 (more precisely, of the difference 
So = O J ~ ~ - O J ~ I ,  cf below) can be compared with the findings of [2] regarding the appearance 
of quantum effects in a macroscopic system (particle in a potential well). In order to clarify 
the influence of the separatrix, we have performed the same calculation away from E+ in 
this case the difference between quantum and classical frequencies approaches zero as 11s' 
in the limit of large S. 

Having established the link of the separauix to the manifestation of macroscopic 
quantum effects (or, alternatively, to the limitations of the correspondence principle) the 
next step is to examine the dependence of So on the magnitude of the instability related to 
the classical separatrix, as expressed by h. Our results for a number of different values of 
h, shown in figure 4, demonstrate that in the limit S -+ CO. 

h 
6 0  = A- 

In S (4.1) 

where A - O(1). Equation (4.1) can also be interpreted in terms of the 'observation time' 
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Figure 3. QumNm (full squarer) and classical (open circles) frequencies ne= the sepmrix (of 
the text for exact definitions). Note the slow (logxithmic) decoy. 
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Figure 4. The rescaled frequency difference (9. - w) Ln S as a function of the instability 
index. The straight lines are convoluted finings of OUI results and correspond. from bonom Io 
top. to S = 10,50, 100,200,500 and 1000, respectively. The asymptotic limit is chmcrerized 
by the inverse logdthmic and linear dependence on S and A. respectively. The inverse of So 
is the cmssover time, known in quantum chaology as the log banier. 

necessary to achieve the 'frequency resolution' 80, i.e. the crossover time 
In S 

k r  a - A 
beyond which a quantum wavepacket does not follow the dynamics of an identical ensemble 
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of classical orbits. 
The logarithmic restriction of the agreement between classical and quantum dynamics 

is one of the most fundamental quantum signatures of chaos. The crossover time for a 
classically chaotic system is given by a relationship [ I ,  111 which is formally identical 
to (4.2), and in which h is the Lyapounov exponent of the chaotic motion. This has 
been explained on the basis of the exponential sensitivity of classical orbits to the initial 
conditions. Equation (4.2), however, arises in a classically integrable system and can be 
understood on the basis of the following simple argument: 

Consider a minimum uncertainty wavepacket initially centred at the unstable fixed point. 
In both topologies, its energy width A E  will be proportional to 1/S. The rate at which the 
wavepacket spreads is proportional to the spread in the group velocities of its components- 
in our case the classical torus frequencies. Hence 

1nA.E InS a-. A I,, ct l/wc, 0: -- A (4.3) 

The above simple argument demonstrates that the absence of quantum chaos in classically 
chaotic systems and the macroscopic quantum effects near the separatrix of a classically 
integrable system are both manifestations of the weakest possible validity of the 
correspondence principle-the 'logarithmic barrier'; the latter's origins can, in both cases, 
be traced to (and quantified by the characteristic exponent of) a local instability. 

An equally interesting similarity occurs in the behaviour of another suggested diagnostic 
tool of chaos, namely the large second differences of quantum eigenvalues with respect to 
a perturbational parameter. Pompfrey [12] confirmed numerically the suggestion made by 
Percival 1131 that large second derivatives of energy eigenvalues are a sign of classically 
chaotic behaviour. The work of Noid et al [ 141 on Henon-Heiles-like systems showed that 
such derivatives appear in connection with energies which participate in avoided crossings, 

4 -1 

-8 

. I . , ' , . ,  I ,  , ' I ,  I .  I , , , - I  
-1.0 4 .8  -0.6 -0.4 -0.2 0.0 0.2 a4 0.6 a8 LO 

E 

Figure 5. Second derivatives of energy eigenvalues with respect to the anisotropy A for S = 10 
(full wares) and S = I00 (open triangles). Also drawn (doned curve) is the corresponding 
classical quantity (a2E/a2A) , .  The large values of second derivatives are known IO be a 
quantum signature of classical chaos. 'this figure shows that the classical limit of these 
derivatives also becomes smgular at the separauix of an integrable system. 
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and suggested that the appearance of a single, isolated avoided crossing is associated with 
a new resonance (generating a separatrix) in phase space. The above relationships can be 
established more clearly in a system with a single degree of freedom. 

Figure 5 displays the dependence of the second derivative of the eigenvalues of (2.1) 
with respect to the anisotropy parameter, as a function of the energy, for S = 10 and 100. 
We observe, in agreement with 1141, that the second derivative changes sign at E = Esep and 
grows significantly in the vicinity of EZp. The change in sign is a signature of the avoided 
crossing. Also plotted in figure 5 is the classical quantity (32E/aZA),; the derivative 
taken at constant action allows us to follow the dependence of a given torus' energy on A; 
thus, the quantity plotted represents the classical limit of the quantum mechanical second 
derivatives. Again, we observe that the basic features of an important diagnostic tool 
of quantum chaology is already apparent, at the classical level, near the separauix of an 
integrable system. 

References 

V Constantoudis and N Theodorakopoulos 

[I] Berry M and B o l a  N 1979 J.  Phys, A: Math. Gen. 12 625 
121 Cary J R, Rum P m d  Skodje R T 1987 Phys. Rev. Lett. 58 3 
[3] Fisher M E 1964 Am. J.  Pltys 32 343 
[4] Prosen T and Robnik M 1992 J. Phys. A: Moth. Gen. 26 L37 
[SI Manson M 1975 Phys. Re\*. B 12 400 
[6] M3mari E. Thomas H, Weber R. Kaufman C md Miller G 1987 Z Phys. B 65 363 
171 Villain J 1974 1. Physique 35 27 
181 Davies M and Heller E 1981 J. Chem P h y  75 846 
[9] Stuckebmkhor A and Marcur R 1993 1. Chem. Phys 98 8443 

[IO] Miller W 1968 J.  Chem Phys. 48 1651 
[ I  I] D'Ariano G. Evangelista L and Smceno M 1992 Phys. Rev. A 45 3646 
[12] Pompfrey N 1974 J.  Phys, B: At. Mol. Phys. 7 1909 
[13] Percival J 1977 Ad". Chem. Phys. 36 I 
[I41 Noid D, Koszykowski M and Marcus R 1983 J.  Ch" Phys. 78 4018 


